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Abstract. We study theN → 0 limit of the O(N) Gross–Neveu model in the framework of
the massless form-factor approach. This model is related to the continuum limit of the Ising
model with random bonds via the replica method. We discuss how this method may be useful
in calculating correlation functions of physical operators. The identification of non-perturbative
fixed points of the O(N) Gross–Neveu model is pursued by its mapping to a Wess–Zumino–
Witten model.

1. Introduction

The aim of this paper is to discuss the critical regime of the two-dimensional random bond
Ising model by applying non-perturbative methods to the massless phase of the O(N) Gross–
Neveu (GN) model in the limitN → 0. It is well known (and briefly sketched below) that
in the context of the replica method the analytic continuationN → 0 of the GN model
describes the quenched averages of the Ising model in the presence of Gaussian distributed
random couplings [1–5]. Perturbative calculations based on the GN model have then been
extensively and successfully used for studying the behaviour of correlation functions of the
random model in the infrared regime where the GN model forN < 2 is asymptotically free
[2, 4, 5]. Being an asymptotically free infrared theory, the perturbative series is plagued
by the presence of Landau poles which do not permit one to study the behaviour of the
correlators on their short-distance scales and therefore to follow in general the change of the
theory in passing from the short- to the large-distance scales. In this paper we show how in
some cases we may get around this problem by using the non-perturbative massless form-
factor (FF) approach proposed in [6]. For the two-point function of the energy operator of
the random model we show for instance that the absence of Landau poles in theS-matrix
formulation allows us to have much more information on the correlator at intermediate
(and small) scales than what can be obtained within a perturbative renormalization group
approach. A more general theoretical problem consists of identifying the ultraviolet fixed
point of the GN model in its entire massless rangeN < 2. At the end of this paper we present
some considerations on a mapping of the GN model to an interacting Wess–Zumino–Witten
(WZW) model which may be useful for further investigation of this problem.
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2. S-matrix in replica space

Let us begin our discussion with the continuum limit of the random-bond Ising model
expressed in terms of a Majorana fermion (see for example [1] for details) with the partition
function given by

Z[m(x)] =
∫

D[ψ ] exp

[
−
∫

d2x ψ( 6∂ −m(x))ψ
]
. (2.1)

In the above formula,m(x) is a (position-dependent) random mass term associated to
the lattice random bond interactions. We assume thatm(x) has a Gaussian distributed
probability P [m(x)] ∝ exp(−m2(x)/4g). Let us now use the standard replica method to
compute the average of the free energy:

lnZ = lim
N→0

ZN − 1

N
. (2.2)

The quenched averages of correlation functions can then be obtained by adding a source
term to the partition function (2.1) and differentiating (2.2) with respect to it. The above
procedure leads to an effective action described by the GN model withN → 0 colours:

S =
∫

d2x [ψa 6∂ψa + g(ψaψa)
2] a = 1, . . . , N. (2.3)

Irrespective of the number of coloursN , the GN model presents at the classical level an
infinite number of local and non-local charges which are conserved just in virtue of the
equations of motion [7, 8]. ForN > 2, the integrability at the classical level is known to
survive at the quantum level: the associated quantum field theory is asymptotically free in
the ultraviolet region, massive [9] and presents in general quite a rich spectrum of bound
states. The integrability of the quantum model implies the elasticity and factorization of its
S-matrix amplitudes which can then be determined by employing the unitarity and crossing
symmetry equations, together with the residue equations coming from the bootstrap principle
[10, 11].

For N < 2 the model is instead asymptotically free in the infrared region and presents
at the quantum level a massless phase, as it can be argued (at least perturbatively) from
the changing of the sign of theβ-function nearg = 0 [12]. Its spectrum consists in this
case of onlyN massless Majorana fermions which can be right- or left-movers with a
dispersion relation parametrized in terms of a crossover scaleM and the rapidity variable
asE = p = (M/2) exp(θ) andE = −p = (M/2) exp(−θ) respectively [13]. Assuming
that the integrability† of the model also holds forN < 2, we propose the following exactS-
matrix involving its fermionic massless excitations (for the general formulation of massless
scattering theories, see [15])‡

SR,R = SL,L = SR,L = S (2.4)

where

S
c,d
a,b (θ) = δa,bδc,dσ1(θ)+ δcaδdb σ2(θ)+ δda δcbσ3(θ) (2.5)

† This statement can actually be proven along the lines of [14] if one is inclined to be rather cavalier about the
meaning of the colour indices in this range ofN .
‡ This essentially follows the original proposal made in [13] for the masslessS-matrix of the GN model, with
the difference that there theS-matrix in theL–L andR–R channel was incorrectly assumed to be−1 on the
basis of Feynman rules derived from the Lagrangian (2.3) which, however, involves forN < 2 irrelevant non-
renormalizable interactions.
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with

σ1(θ) = − iλ

iπ − θ σ2(θ) σ3(θ) = − iλ

θ
σ2(θ)

σ2(θ) = −
0
(
1− θ

2π i

)
0
(

1
2 + θ

2π i

)
0
(

1
2 − λ

2π i − θ
2π i

)
0
(− λ

2π i + θ
2π i

)
0
(
θ

2π i

)
0
(

1
2 − λ

2π i + θ
2π i

)
0
(

1
2 − θ

2π i

)
0
(
1− λ

2π i − θ
2π i

) (2.6)

and

λ = 2π

N − 2
. (2.7)

The above expressions formally coincide with those discussed in [11] for the massive phase
of the model, the main distinctions being the different role played by the rapidity parameter
as well as the different range of the parameterN in the two cases. The ansatz (2.6)
is supported by the validity of the Yang–Baxter equations for all possible combinations
of right- and left-moving particles as well as by the O(N)-invariance of the interaction.
Notice that forN < 2 the above amplitudes do not have poles in the physical sheet (a
feature which is consistent with the massless phase of the model). ForN → 2 they are
continuous functions and atN = 2 reduce to theS-matrix amplitudes of the Sine-Gordon
model at the Coleman transition pointβ2→ 8π

σ2(θ) = 0

σ1(θ) = −2iπ

iπ − θ
0
(
1− θ

2π i

)
0
(

1
2 + θ

2π i

)
0
(
θ

2π i

)
0
(

1
2 − θ

2π i

)
σ3(θ) = −2iπ

θ

0
(
1− θ

2π i

)
0
(

1
2 + θ

2π i

)
0
(
θ

2π i

)
0
(

1
2 − θ

2π i

) .

(2.8)

3. Minimal FFs

Let us now consider the calculation of correlation functions by means of the spectral
representation based on the FFs (see for instance [6, 16, 17] for the relevant formulae
and notation). For the two-particle FF the problem can be initially reduced to consider the
three different channels whoseS-matrices are given by:

σiso = Nσ1+ σ2+ σ3 σ± = σ2± σ3. (3.1)

For each of these channels, the minimal FF can be evaluated. As an example we construct
the one for the isoscalar channel. Watson’s equations for a massless flow are [6] (see also
[18]):

Fα1,α2(θ) = Sα1,α2(θ)Fα2,α1(−θ) Fα1,α2(θ + 2π i) = Fα2,α1(−θ) (3.2)

whereαi = R,L andS stands for a scalarS-matrix which in our case isσiso. In order to
solve these equations it may be useful to employ an integral representation forσiso:

σiso(θ) = −exp

{
− 2

∫ ∞
0

dx

x

e(
λ
π
+1)x − e−x

ex + 1
sinh

(
θx

iπ

)}
. (3.3)

(Note that forN = 1 this simply reduces to−1—theS-matrix of the Ising model.) Let us
write Fα1,α2(θ) as

Fα1,α2(θ) = fα1,α2(θ)gα1,α2(θ) (3.4)
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wheregα1,α2(θ) satisfies

gα1,α2(θ) = −gα2,α1(−θ) gα1,α2(θ + 2π i) = gα2,α1(−θ) (3.5)

whereasfα1,α2(θ) fulfils the equations

fα1,α2(θ) = exp

{
− 2

∫ ∞
0

dx

x

e(
λ
π
+1)x − e−x

ex + 1
sinh

(
θx

iπ

)}
fα2,α1(−θ)

fα1,α2(θ + 2π i) = fα2,α1(−θ). (3.6)

The solution of (3.5) for theR–R and L–L channels is unique (up to a normalization
constant) and is given by

gR,R(θ) = gL,L(θ) = sinh

(
θ

2

)
. (3.7)

For theR–L channel any linear combination of e
θ
2 and e−

θ
2 is a solution. The exact

computation of the two-particle FF for the energy operator forN = 1 (which corresponds
to the pure Ising model) and its expected infrared behaviour atN = 0 fixes the solution in
a unique way

gR,L(θ) = e
θ
2 . (3.8)

As for (3.6) we take the same solution in theR–R, L–L andR–L channels (this assumes
that fR,L(θ) = fL,R(θ)):

fR,R = fL,L = fR,L = f (3.9)

with the functionf given by

f (θ) = exp

{
− 2

∫ ∞
0

dx

x

e(
λ
π
+1)x − e−x

ex + 1

sin2
(
x(iπ−θ)

2π

)
sinhx

}
. (3.10)

This can also be expressed as

f (θ) =
∞∏
k=0

(
0
(
1− λ

2π + k
)
0
(

3
2 + k

)
0(2+ k)0 ( 1

2 − λ
2π + k

) )2

× 0
(

5
2 − θ

2π i + k
)
0
(

3
2 + θ

2π i + k
)
0
(
1− λ

2π − θ
2π i + k

)
0
(− λ

2π + θ
2π i + k

)
0
(
2− θ

2π i + k
)
0
(
1+ θ

2π i + k
)
0
(

3
2 − λ

2π − θ
2π i + k

)
0
(

1
2 − λ

2π + θ
2π i + k

) .
(3.11)

Using its infinite-product representation one can show thatf (θ) satisfies the following
functional relation:

f (θ)f (θ + iπ) = Cλ
0
(− λ

2π + θ
2π i

)
0
(

1
2 − λ

2π − θ
2π i

)
0
(
1+ θ

2π i

)
0
(

3
2 − θ

2π i

) (3.12)

which may be useful in the computation of higher-particle FFs. The constantCλ is given
by

Cλ =
0
(

3
2

)
0
(− λ

2π

)
0
(

1
2 − λ

2π

) ∞∏
k=0

(
0(1− λ

2π + k)0
(

3
2 + k

)
0(2+ k)0 ( 1

2 − λ
2π + k

))4
(1+ k) ( 3

2 + k
)(− λ

2π + k
) (

1
2 − λ

2π + k
)

(3.13)

its numerical value atN = 0 is C−π = 0.5854. . ..



A non-perturbative approach to the random-bond Ising model 8419

4. Two-point function of the energy operator

Let us specialize our analysis to evaluate the (average) correlation function of the energy
operator〈ε(x)ε(0)〉. In terms of the replica, this is equivalent to evaluating the correlation
function

1

N

N∑
k=1

〈εk(x)εk(0)〉|N=0 (4.1)

in the GN model. At the infrared fixed point, the energy operator is given in terms of
the fermions byεk(x) ∼ −iψ(−)

k (x)ψ
(+)
k (x) whereψ(−)

k (x) and ψ(+)
k (x) are the chiral

components of the original Majorana fermions. Duality and spin reversal symmetry translate
into invariance of the Lagrangian (2.3) under the two transformationsψ

(+)
k 7→ −ψ(+)

k and
ψ
(−)
k 7→ ψ

(−)
k or ψ(+)

k 7→ ψ
(+)
k and ψ(−)

k 7→ −ψ(−)
k . Under these two transformations,

the energy operator changes its sign. Since these discrete symmetries are preserved by
the perturbation, one concludes that the only non-vanishing FFs of the energy-operator are
those with an odd number of both left- and right-moving particles. In particular, the first
non-trivial FF is

F
R,L
i,j (θ1, θ2) = 〈0|

( N∑
k=1

εk(0)

)
|Ri(θ1)Lj (θ2)〉. (4.2)

Here |Ri(θ1)Lj (θ2)〉 corresponds to an asymptotic state of one right-moving and one left-
moving fermionic particle. O(N) and Lorentz invariance fixes this FF (up to an overall
normalization constant) to be given byFR,Li,j (θ1, θ2) = δi,jFR,L(θ1 − θ2) with FR,L as in
equations (3.4), (3.8) and (3.10). In the previous expression there could be, in principle, a
supplementary factor (a 2π i periodic symmetric function without poles, i.e. a polynomial
in eθi ). This factor is actually absent in the pure Ising model (N = 1) and its absence
will be further justified later by the correct asymptotic behaviour of the correlation function
(4.1). The contribution of (4.2) to the two-point correlation function of the energy operator
is given by

〈ε(x)ε(0)〉(2) ∼
∫ ∞
−∞

dθ1

2π

∫ ∞
−∞

dθ2

2π
|FR,L(θ1− θ2)|2 exp

(
−Mr

2
[eθ1 + e−θ2]

)
≡ C(2)ε (Mr) (4.3)

where the superscript indicates that this is the two-particle contribution andx = (ir, 0)†.
With the change of variablesγ = θ1+ θ2, θ = θ1− θ2 we obtain

C(2)ε (Mr) =
1

2

∫ ∞
−∞

dθ

2π

∫ ∞
−∞

dγ

2π
|FR,L(θ)|2 exp

(
−Mreθ

2 cosh
γ

2

)
=
∫ ∞
−∞

dθ

2π2
K0(Mre

θ
2 )|FR,L(θ)|2. (4.4)

Using (3.4), (3.8)–(3.10) we can express|FR,L(θ)|2 as (hereafter we will specialize our
formulae to the limitN → 0)

|FR,L(θ)|2 = eθ√
1+ θ2

π2

8(θ) (4.5)

† Actually, there is another two-particle contribution to this correlation function, namely the one coming from
FL,R . However, it gives the same contribution asFR,L.
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with

8(θ) = exp

{
2
∫ ∞

0

dx

x
e−x tanh2

(x
2

)
cos2

(
xθ

2π

)}
. (4.6)

It is straightforward to evaluate this last integral numerically, it is bounded from below by
0 and from above by

2
∫ ∞

0

dx

x
e−x tanh2

(x
2

)
= 0.315 384. . . (4.7)

i.e.

16 8(θ) 6 1.370 786 (4.8)

for any value ofθ . In particular, the factor8(θ) will not influence theθ →±∞ asymptotics
of the FF. Thus, we can replace8(θ) by a constant in order to discuss the infrared behaviour
of the contribution (4.4) to the correlation function. Putting

8(θ) = 1 (4.9)

we find

C(2)ε (Mr) =
∫ ∞

0
dp/π2 p√

1+ 4ln2p/π2
K0(Mrp) Mr � 1 (4.10)

where we have made the change of variablesp = e
θ
2 . Upon expansion of the integrand,

the leading infrared behaviour is found to be given by

C(2)ε (Mr) =
1

2π(Mr)2 lnMr

(
1+O

(
1

lnMr

))
. (4.11)

This fits nicely with renormalization group results, as the following discussion shows. Up
to three-loop order, we have (see e.g. the two-loop result equation (4.10) of [5] which we
have extended by one further order using results of [19]):

〈ε(x)ε(0)〉 = r−2 4g0

N ζ

{
1+ 2πg0(1+ 2 ln(ζ )− ζ )

ζ

+2π2g2
0

(
3ζ 2− 8ζ + 5+ 8 ln(ζ )2− 4 ln(ζ )ζ

)
ζ 2

}
(4.12)

whereζ = 1+ 8πg0 ln r andg0 is a bare coupling constant. The normalization constantN
in (4.12) should be chosen such that this perturbative result agrees with (4.11) atM = 1
for r →∞. Truncation of (4.12) at one, three or two loops leads toN = 1, 1− 2πg0 and
1− 2πg0 + 6π2g2

0, respectively. SettingM = 1 we obtain a good agreement with (4.4) in
the regionMr > 10 with g0 = 0.23, 0.038 and 0.050 for the truncation of (4.12) at order
g0, g2

0 andg3
0, respectively. One can see that the higher orders shift the Landau pole towards

smaller scales and make the behaviour of (4.12) more regular aroundMr = 1 in figure 1.
Even higher loop corrections in the pertubative framework are expected to move this pole
to smaller and smaller scales. The main point is the absence of this kind of singularity in
our result based on the FF approach.
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Figure 1. Two-particle approximation to the correlation function of the energy operator (full
line), the one-loop perturbative result (long broken curve), the two-loop result (short broken
curve) and the three-loop result (chain curve).

5. Comments on higher-particle FFs

Apart from logarithmic corrections, the energy operator has canonical scaling dimensions
in the infrared and, as explicitly checked for similar operators in other massless scattering
theories, a rapidly convergent spectral series for its correlation functions is expected in this
case [6, 20]. This expectation seems indeed confirmed by the above calculation. Under these
favourable circumstances, one is essentially released from computing the more complicated
and cumbersome expressions of the higher-particle FFs for most reasonable purposes. It
should be pointed out though, that these favourable cases do not always occur. Consider,
for instance the (averaged) two-point correlation function of the spin operator. In this case
two kinds of technical problems arise: the first difficulty is that the integrals entering the
spectral series should be regularized in order to cure the infrared divergencies. This is,
however, a well-known problem of the spectral representation based on massless FFs [6],
a problem that now can be easily handled following the suggestion of [21]. The second
difficulty is the most serious one, namely the apparent necessity of employing in this case all
higher-particle FFs of the spin operator in order to recover both its infrared and ultraviolet
behaviour. The problem is particularly difficult here since there is a huge difference in
computing higher-particle FFs in diagonal rather than non-diagonal scattering theories (in
the diagonal case one is often able to obtain a closed expression for all the higher-particle
FFs, see for instance [22]). Although progress has recently been achieved on the FF problem
in some non-diagonal scattering theories [18, 23], the general determination of the higher-
particle FFs for non-diagonalS-matrix models still remains an open problem of a (quite)
mathematical difficulty. It would be clearly interesting to try to develop the massless FF
approach further in order to deal successfully with this class of operators.
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6. Non-trivial fixed points

In the last part of this paper, we present some considerations which may be useful to better
understand the structure of the fixed points in the O(N) GN model and in particular to
determine its ultraviolet fixed point in the rangeN < 2. The theory behaves once again
differently for N > 2 and forN < 2. More is known about the structure of the fixed
points of the former case rather than of the latter. Let us actually recall that forN > 2 the
model is massive and ultraviolet asymptotically free. This means that at short distances it
reduces toN free Majorana fields (with central chargecuv = N/2) whereas at large distance
scales no massless degrees of freedom are left and its central charge is thereforecir = 0.
Conversely, forN < 2 the model is asymptotically free in its infrared scales and there we
have correspondinglycir = N/2. However, since in this case the model is massless along
all its flow from large to short distance scales, the central charge in the ultraviolet limit
is one of the dynamical data which remain to be determined. Some insight can be gained
by rewriting the partition function of the model defined by the action (2.3) in a way more
appropriate for studying the existence of some other fixed point in addition to the (trivial)
one atg = 0 (a similar procedure has been used in [24] to study non-trivial fixed points in
the chiralSU(N) GN model). To this end, we first use the identity

(ψ̄aψa)
2 = −2(ψ̄aγµT

A
abψb)

2 (6.1)

whereT A are the O(N) generators normalized as trT AT B = δAB (this identity is a direct
consequence of the fact that we are working with Majorana fermions). Then the quartic
term in the interaction can be traded for a quadratic term via the introduction of an auxiliary
field through the identity

exp

(
2g
∫

d2x (ψ̄aγµT
A
abψb)

2

)
=
∫

DAAµ exp

(
1

8g

∫
d2x (AAµ)

2+ i
∫

d2x (ψ̄γµT
Aψ)AAµ

)
(6.2)

and hence the partition function can be written as

Z =
∫

Dψ̄a Dψa DAAµ exp

[
−
∫

d2x

(
ψ̄a(6∂δab + i 6Aab)ψb +

1

8g
AAµA

A
µ

)]
. (6.3)

The key observation now is that the fields in equation (6.3) can be decoupled through the
transformations

A = −∂hhT Ā = −∂̄ggT ψ =
(
g 0
0 h

)
χ (6.4)

whereh and g are O(N) matrix-valued fields, andT stands for transpose. Taking into
account the Jacobians of the above transformations [25] (for more details compare also with
section 9 of [26]), we can rewrite the whole partition function as a product of decoupled
sectors

Z = ZffZghZint (6.5)

whereZff is the partition function for theN free Majorana fermions,Zgh the ghost partition
function arising in the computation of the Jacobians and

Zint =
∫

DhDg exp

{
(1+ 2Cv)(0[h] + 0[gT ])

−
(
(1+ 2Cv)α

2π
+ 1

8g

)∫
d2x tr(∂hhT ∂̄ggT )

}
(6.6)
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whereα is a parameter that keeps track of regularization ambiguities,Cv is the dual Coxeter
number of O(N) and0[u] is the WZW action [27]. Hence, modulo decoupled conformally
invariant sectors, we have an effective theory of interacting WZW fields.

One comment is in order regarding the regularization ambiguities arising in the
evaluation of the Jacobians. The quadratic term inAAµ in (6.3) breaks both gauge invariance
and local chiral invariance, hence there is noa priori reason to choose a regularization
preserving any of these two symmetry transformations. We will fix the parameterα later.
Using the Polyakov–Wiegmann identity [28] it is straightforward to see the existence of a
fixed point given by the value of the coupling constantg1 = π/(4(1+ 2Cv)(1− α)). The
effective partition function at this value may be written as

Zint|g1 =
∫

Dg̃ exp((1+ 2Cv)0[g̃]) (6.7)

where the identificatioñg = gT h has been made and the integral overh has been factored
out. Taking into account the free fermions and the ghosts, the partition function (6.5)
corresponds to a conformal field theory whose Virasoro central charge is given by

c1 = N

2
−N(N − 1)+

[
(1+ 2Cv)N(N − 1)

2(1+ Cv)
]
= N

2

(
1− N − 1

1+ Cv

)
. (6.8)

There may be, however, another fixed point, given by the valueg2 = −π/(4(1+ 2Cv)α),
where we have

Zint|g2 =
∫

DhDg exp{(1+ 2Cv)(0[gT ] + 0[h])} (6.9)

and the corresponding Virasoro central charge is given by

c2 = N

2
−N(N − 1)+ 2

[
(1+ 2Cv)N(N − 1)

2(1+ Cv)
]
= N

2
+N(N − 1)

Cv

1+ Cv . (6.10)

First we have to choose the parameterα and secondly identify the fixed points in the two
rangesN > 2 andN < 2.

Let us first see how the above points can be settled in the well-understood caseN > 2.
Since in this region the model is asymptotically free in the ultraviolet and massive otherwise,
no non-trivial fixed point is expected. Therefore one should chooseg = ∞ in (6.3) since
then the integration over the gauge fields leads to constraints that eliminates all the degrees
of freedom yielding ac = 0 theory. This suggests the choiceα = 1 (i.e. the gauge-
invariant regularization) for which we have an infrared fixed point in the strong coupling
limit g1→∞. PluggingCv = N −2 into the corresponding expression (6.8) of the central
charge, we find indeed the correct valuec1 = 0. Notice that with this choice ofα, the
value ofg2 is negative and does not correspond to a physical fixed point, because this is
incompatible with the unitarity of the GN model forN > 2.

The GN model atN = 2 is somewhat special since it is equivalent to the massless
conformally invariant Thirring model withc = 1 for − 4

π
6 g < ∞. At N = 2 one has

Cv = 0 and retainingα = 1 as before, one finds thatg1 = ∞ still corresponds to a theory
with c1 = 0 which is consistent with approachingN = 2 from above out of a massive
regime. The other fixed point is now located at the end of the line wherec = 1, i.e.
g2 = − 4

π
andc2 = 1 which seems to be more appropriate for the approach toN = 2 from

below out of the massless regime.
Let us now discuss the fixed points in the regimeN < 2 assuming that both formulae

α = 1 andCv = N − 2 also apply here. The GN model is generally non-unitary in this
regime, a fact which opens the possibility of also considering a fixed point with a negative
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value of the coupling constant. With the above choice ofα andCv, the central charge for the
fixed pointg1 is identically zero also forN < 2. Let us consider the second critical value
of the coupling constant, i.e.g2. Note thatg2 is negative forN > 3

2 but positive otherwise
and therefore also compatible with the statistical interpretation as the random-bond Ising
model forN → 0. The corresponding value of the ultraviolet central charge is then given
by (6.10), i.e. upon insertingCv = N − 2

cuv = N(2N − 3)

2
. (6.11)

The above formula does not seem to apply to the caseN = 1: in fact it predictscuv = − 1
2,

but instead in this case we expect to findcuv = cir = 1
2 for the simple reason that it is

impossible to construct a quartic fermionic interaction with only one Majorana fermion.
The reason of this mismatch seems somehow interesting: first notice that using (6.10) the
variation of the central charge from the short to the large distances reads

1c = N(N − 1)
Cv

1+ Cv . (6.12)

It is a general result of two-dimensional quantum field theories that such variations of central
charges satisfy the sum rule [29]

1c = 3

4π

∫
d2x |x|2〈2(x)2(0)〉 (6.13)

where2(x) is the trace of the stress-energy tensor. This operator is proportional to the
quartic interaction term in the Lagrangian (2.3) (the proportionality constant being theβ(g)

function of the model). Therefore, the termN(N − 1) in (6.12) has a pure combinatorial
origin. This factor itself of course vanishes forN = 1. However, after pulling out this
combinatorial term, what is left in (6.12) or in (6.13) may be interpreted as ‘1c per unit
of replica’, i.e. a quantity which still depends onN but which has lost any reference to
the colour indices of the theory. Let us denote it byD(N). For N = 1 this quantity
can be easily computed by means of the Green function of the free fermion resulting in a
(logarithmically) divergent expression

D(1) ∼
∫

d2x |x|2 1

| x |4 . (6.14)

For N 6= 1 we expect that the divergence is cured by the presence of interactions so that
we expectD(N) to be a finite quantity†. The above considerations suggest then forN = 1
there may be a sort of anomaly which conspires to give a non-zero value for1c. In this
case the correct procedure might be to setN = 1 in (6.10) before inserting the expression
of Cv, i.e. to use a regularization expression forD(N = 1).

7. Conclusions

In summary, in this paper we have applied massless FFs to the critical regime of the
random-bond Ising model. Compared with the perturbative approach, the energy correlation
function obtained with this method is well behaved in the whole range of scales. The
technical difficulties encountered in the computation of higher-particle FFs can possibly be
circumvented by using methods similar to those used in [18, 23], where FFs for some non-
diagonalS-matrices have been computed. One motivation of our approach is to open the
way for a more deep understanding of the ultraviolet behaviour of the massless flow of the

† At N = 2 it is the vanishing of theβ function which is responsible for the vanishing ofD(2).
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Ising model from its pure to its disordered regime and, more generally, for all the O(N) GN
models withN < 2 which appear in the replica approach of the original random problem.
To this end we have also pointed out a possible way of reaching the ultraviolet fixed point
by a mapping of the GN action to a WZW model, relating the strong and weak coupling
regimes. This approach predicts the presence of a non-trivial fixed point with central charge
given forN 6= 1 by (6.11). The lacking of a sound mathematical definition for the relevant
quantities of the group O(N) for N < 2 makes it highly interesting to have independent
information on this issue. In this respect, the most natural approaches are those based on
the thermodynamical Bethe ansatz [30] or the aforementionedc-theorem sum rule [29].
The application of the two approaches seems, however, presently obstructed by technical
difficulties related both to the non-diagonal nature of theS-matrix and to the subtle problem
of how to take the analytic continuation of the mathematical expressions for continuous
values ofN in the rangeN < 2 (this is particularly severe for a thermodynamical Bethe
ansatz approach). The solution of these problems together with the massless FF approach
proposed here may give interesting non-perturbative information in the field of disordered
systems.
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